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The thermal relaxation times are characteristic parameters of deep levels which
can be calculated by the analysis of admittance data. The contributions of these char-
acteristic parameters can be sharp or broadened. If sharp contributions are assumed
the analysis procedure is called a parametric method. This procedure leads to a well-
posed inverse problem but additionally the unknown number of discrete contributions
must be determined. For broadened contributions a nonparametric method is used.
This procedure leads to an ill-posed inverse problem but the number of contributions
is determined automatically. Both kinds of analysis methods are compared with a
Monte Carlo study on simulated admittance data. In addition, the parametric and
nonparametric procedures are used to analyze experimental admittance data in order
to obtain the deep levels and electrical properties of a semi-insulating GaAs Schottky
diode. c© 1999 Academic Press

Key Words:ill-posed problem; Tikhonov regularization; parametric method; non-
parametric method; admittance spectroscopy.

1. INTRODUCTION

Material parameters of Schottky diodes can be calculated from admittance data [1].
Characteristic parameters are the resistivity and the dielectric constant of the semiconductor
material, the potential barrier of the metal-semiconductor interface, the energy of the band
gap between the valence and the conduction band of the semiconductor, and the relaxation
times of the energy levels within this band gap. The main topic of this article is the calculation
of these relaxation times for deep levels.

From the view of solid state physics the contributions of the relaxation times should
be sharp for single crystal material: All deep levels which originate from the same type
of crystal defect have the same characteristic relaxation time. But for real crystals these
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contributions can be broadened due to the influence of a slightly varying local environment
of the deep levels. This local influence leads to slightly different relaxation times. The
reason for variations in the local environment can be twofold: Due to local interaction of
different lattice defects and due to the influences introduced by the experimental method.

Local interactions depend strongly on the distance between the different kinds of point
defects. Even in the case of a regular distribution the local distances will vary slightly.
One reason for this is the different concentration for each type of defect. Therefore, the
overlapping of a certain deep level with different energy levels results in different relaxation
times. This overlapping effect is stronger if the surrounding defects have a small activation
energy. In this case, the corresponding Bohr radius is of the order of the distances between
the defects. In addition, a macroscopic strain exerted to the material could induce a further
broadening of the relaxation times.

Experimental broadening of the contributions of deep level is caused by the influence of
the applied measurement technique on the local environment. If the electric field induced by
an applied bias voltage varies in the Schottky diode the defects will show different emission
rates depending on their position in the Schottky junction according to the Poole–Frenkel
effect [2]. Further broadening is introduced by the influence of the so-called Debye tail
connecting the neutral with the depletion region of a diode. Defects in the Debye tail have
different relaxation times [3].

As a matter of principle all deep levels are subjected to broadening effects, but in some
cases they can be neglected and the corresponding levels can be characterized by sharp
relaxation times. But if these effects are essential the deep levels must be characterized by
a broad distribution of their relaxation times.

According to the sharp and broadened contributions there are two classes of data analysis
methods—the parametric and the nonparametric method. With the parametric method dis-
crete parameters for each relaxation time of a deep level are estimated from experimental
data. This is the numerical approach of Macdonald [4]. In nonparametric methods a contin-
uous distribution for the relaxation times of deep levels is estimated. Such a nonparametric
method was presented in our previous article [1].

In this paper we compare these two different data analysis methods. By this comparison
the reliability of their estimated results can be judged. This is not only restricted to the
analysis of admittance data but can also give an useful insight for general data anlysis with
parametric and nonparametric methods.

2. MODELS FOR THE ADMITTANCE OF A SCHOTTKY DIODE

The electric characteristics of a Schottky diode can be represented by an equivalent
circuit consisting of resistances and capacitances. Figure 1 shows the equivalent circuit we
introduced previously [1]. This circuit is especially adapted to high resistivity semiconductor
materials because the semiconductor bulk is taken into account.

In our previous article the equivalent circuit is discussed in detail. A short motivation is as
follows: The first part in the equivalent circuit (marked withZ1) is due to the conductivity
of the depletion region represented by the resistorR01 and due to the charge separating
effect of this region represented by the capacitorC01. The influence of the deep levels is
represented by the series connections of resistorsRi and capacitiesCi according to Losee
[5]. The admittance of the first part is denoted byY1(ω). In the second part of the equivalent
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FIG. 1. Equivalent circuit of a Schottky diode.Z1 is the impedance of the depletion region andZ2 the
impedance of the semiconductor material and the contact on the semiconductor.

circuit (marked withZ2) the resistanceR02 and capacitanceC02 of the semiconductor bulk
are taken into account. In addition, the resistorR03 stands for the ohmic back contact of the
semiconductor. Both parts together yield the expression

Y(ω) =
(

1

Y1(ω)
+ 1

G02+ iωC02
+ R03

)−1

(1)

for the complex admittance of a Schottky diode in dependence on the frequencyω. In this
expression the resistanceR02 is replaced by its conductivityG02= R−1

02 .
The productRi Ci = τi leads to the thermal relaxation time of the corresponding deep

level. This relaxation time has the well known dependence on the activation energy1Ei

and the cross sectionσi of the deep level,

τ−1
i =

1

4

(
3kB

m∗e

)1/2(2m∗ekB

πh̄2

)3/2

σi T
2e−1Ei /kBT . (2)

In the above equationkB denotes the Boltzmann constant, ¯h Planck’s constant,m∗e the
effective mass of an electron in the crystal lattice of a semiconductor, andT the absolute
temperature.

For the admittanceY1(ω) of the first part, which contains the influence of the deep levels,
two different approaches can be introduced. In the first approach the contributions of deep
levels are supposed to be discrete. In this case the real- and imaginary parts ofY1(ω) have
the form [6]

<(Y1(ω)) = G01+
n∑

i=1

ω2τi

1+ ω2τ 2
i

hi , (3a)

=(Y1(ω)) = ωC01+
n∑

i=1

ω

1+ ω2τ 2
i

hi , (3b)

where the{hi }denote the discrete weights of the deep levels. Each deep level is parametrized
by τi andhi and therefore this approach is calledparametric. Further, the resistanceR01 is
replaced by its conductivityG01= R−1

01 .
The contributions of the deep levels are supposed to be continuous in the nonparametric

approach. That is, the relaxation timesτ are subjected to a continuous distributionh(τ ).
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The sums in Eqs. (3a) and (3b) must be written in the continuous limit as integrals. In this
caseY1(ω) has the form

<(Y1(ω)) = G01+
τmax∫
τmin

ω2τ

1+ ω2τ 2
τh(τ ) d(ln τ), (4a)

=(Y1(ω)) = ωC01+
τmax∫
τmin

ω

1+ ω2τ 2
τh(τ ) d(ln τ). (4b)

The additional factorτ in both integrals appears because of the logarithmic scale for the
integration variabledτ = τ d(ln τ). The notation lnτ means exactly ln(τ/τ0) with τ0= 1 s
in order to get a dimensionless argument for the logarithm. This approach is callednon-
parametricbecause the contributions of the deep levels are given by an arbitrary continuous
distributionh(τ ). For discrete contributions of the relaxation times the distributionh(τ ) is
expected to show sharp peaks. A characteristic relaxation time of this distribution can be
estimated by the average

τi =
∫

peaki
τ 2h(τ ) d(ln τ)∫

peaki
τh(τ ) d(ln τ)

(5)

and the corresponding weight by

hi =
∫

peaki

τh(τ ) d(ln τ). (6)

An interesting point is the temperature dependence of the additional parametersC01, G01,
C02, G02, andR03. The parametersC01, C02, andR03 are expected to be nearly independent
of the temperature whereas the two remaining parameters should have a characteristic
temperature dependence according to [7]

G01 ∼ T2e−eV0/kBT , (7a)

G02 ∼ T2e−Eg/2kBT . (7b)

V0 is the potential of the barrier at the metal-semiconductor interface ande the elementary
charge.Eg is the energy of the band gap between the valence and the conduction band.

Within the nonparametric approach the contributions of the deep levels are assumed
to be given by a continuous distributionh(τ ). Estimating this distribution functionh(τ )
numerically as outlined in the next section one has, however, to discretize the integrals in
(4a), (4b), obtaining, e.g.,

<(Y1(ω)) = G01+
∑

i

ω2τi

1+ ω2τ 2
i

τi h(τi )wi , (8a)

=(Y1(ω)) = ωC01+
∑

i

ω

1+ ω2τ 2
i

τi h(τi )wi , (8b)
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where the{wi } are weights due to the discretization and the{τi } are fixed points with
constant spacing within the rangeτmin, τmax of the distribution.

Thus, there seems no great difference between the two approaches; the models for the
functions<(Y1(ω)) and=(Y1(ω)), given in (3a), (3b) for the parametric and in (8a), (8b) for
the nonparametric approach look very similar. There is, though, the difference that in the
parametric approach the positions of the contributionsτi belong to the unknowns, which
have to be estimated, whereas in the nonparametric approach they are taken to be fixed. But
this is not of great relevance. If we would use in both approaches the least squares estimator,
we had only to choose the appropriate minimization routine for the determination of the
estimates, either a nonlinear or a linear one. The main point is that the two models for
the measurable quantities differ in the number of unknown parameters and therefore in
the mathematical properties of the map between unknowns and data. One has only a few
parameters in the parametric approach, a lot and in principle an infinite number of unknowns
in the nonparametric approach. The number of unknowns, however, has a strong influence
on the reliability of the estimation. This can be easily seen, if one writes the relation between
data and unknowns{h(τi )} in (8a), (8b) as

Yj =
∑

i

K ji h(τi ), j = 1, . . . , N, Yj = <(Y1(ω j )),=(Y1(ω j )), resp. (9)

The kernel functions in (4a), (4b) taken as operators in a function space have a spectrum of
singular values which converges to zero. Their discrete version, combined into the matrix
K in (9), is therefore ill conditioned. This is most drastically seen in the underdetermined
situation: The more the number of unknowns exceeds the number of data points, the more
zeros are in the spectrum of the singular values of the matrixK . Furthermore, the worse the
condition of the matrix is, the larger in turn the confidence regions of the estimated values
become.

The condition of the matrix is thus of utmost importance for the estimation and for the
decision which type of estimator one has to use. In the parametric case one assumes that the
matrix is not ill conditioned; one may use the least squares estimator. In the nonparametric
case the ill-conditioning of the matrix is obvious; the least squares estimator turns out to
be not consistent. One has to use another estimator, e.g., the estimator provided by some
regularization procedure. In such estimators one has to introduce a prior knowledge in
order to replace the information which is destroyed by the ill-conditioning of the matrix
[8].

Thus the Eqs. (3a), (3b) and (4a), (4b) constitute different mathematical models for the
measurable quantities<(Y1(ω)) and=(Y1(ω)) and the inference of the unknown parameters
resp. of the unknown function from a finite set of data needs different estimators.

The assumptions about the experimental errors of the data also play a crucial role in the
estimation. They influence the mathematical expression of the estimator and in turn the
estimates and their confidence regions [9]. A precise formulation of the error model and a
careful determination of the uncertainty regions of the estimates are indispensable in order to
have a measure for the reliability of the estimation. An ill-conditioning of the map between
unknowns and data is immediately revealed by studying the size of the confidence regions.
Using the least squares estimator in the ill-conditioned case, e.g., leads to huge uncertainty
regions for the estimates, because the size of these regions are inverse proportional to the
singular values.
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3. METHODS OF DATA ANALYSIS

In the data analysis the additional model parametersC01, G01, C02, G02, andR03 and the
contributions of the deep levels are estimated from measured admittance data. The method
of this analysis depends on the approach used to model the deep levels.

3.1. Parametric Method

In the parametric approach the discrepancy

DY =
m∑

i=1

1

η2
1,i

[<(Yη
i

)−<(Y(ωi ))
]2+ m∑

i=1

1

η2
2,i

[=(Yη
i

)− =(Y(ωi ))
]2

(10)

of the measured admittance dataYη
i and the calculated onesY(ωi ) is minimized with

respect to the additional model parameters and with respect to the parameters of the discrete
contributions of the deep levels given byτi andhi . The admittance dataY(ωi ) are calculated
by Eq. (1) with the discrete approach in Eqs. (3a) and (3b). The valuem is the number of
measured data andη1,i andη2,i are the experimental errors. These experimental errors are
supposed to be relatively constant and Gaussian distributed. This means thatη1,i ∼ <(Yη

i )

andη2,i ∼ =(Yη
i ).

The discrepancyDY in Eq. (10) depends on the numbern of discrete contributions of
the deep levels. This numbern is unknown and must additionally be determined. It must
be large enough in order to take all relevant contributions into account but it must also
be small enough in order to avoid additional and incorrect contributions. These additional
contributions would reduce the discrepancyDY only by adapting the noise on the admittance
data but would not lead to reasonable contributions of deep levels.

A possible method for the determination of the number of discrete contributions is the
application of a statistical test. A test consists of a rule that makes a decision to accept or
reject a hypothesis on the basis of measured data.

The hypothesis is in our case that the number of discrete contributions is equal ton. The
hypothesis is accepted if

|DY(n+ 1)− DY(n)|
DY(n)

< α (11)

and rejected otherwise.DY(n) denotes the discrepancy in Eq. (10) in dependence on the
numbern of discrete contributions. The term on the left hand side of the inequality (11)
measures the relative decrease of the discrepancy ifn is increased ton+ 1. α is an upper
limit for this decrease.

This relative decrease is significant if it is larger thanα. Then, the hypothesis is rejected.
If the relative decrease is smaller thanα it is taken to be insignificant and the hypothesis
is accepted. With this test the numbern is increased gradually until the above inequality
is fulfilled. We have chosenα= 10−2. This value ofα is small enough in order to take
significant contributions of deep levels into account and it is large enough to preventn from
pretending too many additional contributions. It should be mentioned that the choice ofα

depends on the investigated problem.
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3.2. Nonparametric Method

In the nonparametric approach a continuous distribution of the relaxation timesτ must
be calculated from measured dataYη

i . This case was discussed extensively in our previ-
ous article [1]. The calculation leads to a so-called ill-posed inverse problem [10]. Even a
small noise on experimental admittance data has a large influence on the continuous distri-
bution. Therefore, special methods are needed to calculate a continuous distribution from
experimental data. Such methods are called regularization methods [11]. In Tikhonov’s
regularization method the functional

V(λ) =
m∑

i=1

1

η2
1,i

[<(Yη
i

)−<(Y(ωi ))
]2+ m∑

i=1

1

η2
2,i

[=(Yη
i

)− =(Y(ωi ))
]2

+ λ
τmax∫
τmin

[τh(τ )]2 d(ln τ) (12)

is minimized with respect to the additional model parametersC01, G01, C02, G02, andR03

and with respect to the functionτh(τ ). This functional consists of three terms. The first
and the second term are the discrepancy of the measured data comparable to Eq. (10) of
the parametric method. The difference is that the values for the admittance are calculated
according to Eqs. (4a) and (4b) instead of Eqs. (3a) and (3b). These two terms force the
calculated values to be compatible with the experimental ones. The third term is the so-
called regularization functional with the regularization parameterλ. This term leads to a
stable estimate of the functionτh(τ )without large irregular fluctuations. The regularization
parameter which controls the stability is determined with the self-consistent (SC) method
[12].

In the nonparametric method the number of contributions is calculated automatically by
the number of peaks in the continuous distribution. Discrete deep level contributions can
be easily calculated from the continuous distribution by Eqs. (5) and (6).

Although the parametric and nonparametric methods are in principle different there is a
similarity between these methods. Besides the minimization of a discrepancyDY(n) or of
a functionalV(λ), both methods include an additional criterion for the estimation of their
solution. In the parametric method this criterion concerns directly the number of discrete
contributions, whereas in the nonparametric method the criterion for the determination of
λ deals with the degree of stability for the functionτh(τ ).

4. RESULTS FOR SIMULATED DATA

In this section the parametric and nonparameteric method for the analysis of admittance
data are compared with a Monte Carlo study. The comparison is carried out for three different
cases of deep level contributions:

(1) only discrete contributions,
(2) only continuous contributions, and
(3) discrete and continuous contributions simultaneously.
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In a preliminary step a set of hypothetical model parameters

C01 = 1.0 · 10−10 F,

G01 = 1.0 · 10−8Ä−1,

C02 = 1.0 · 10−11 F,

G02 = 1.0 · 10−6Ä−1,

and

R03 = 1.0 kÄ

and hypothetical discrete and continuous relaxation time contributions are used to generate
samples of admittance data for each of the three cases addressed above according to Eq. (1).
For this purpose, 200 values for the angular frequencyω were chosen from a logarithmic
scaled interval [1 s−1, 107 s−1]. The experimental error was simulated by adding a Gaussian
random number corresponding to a relatively constant error of 1%, which is comparable
to the noise in experimental data. In the Monte Carlo study for each case 1000 samples of
admittance data are simulated. The samples differ only in the realization of the Gaussian
random number.

For the 1000 samples the parametric and the nonparametric analysis method is applied.
The results calculated from each sample are averaged over the results of the total number
of samples. Thus, representative solutions can be calculated. With the parametric method
averaged values of the parametersC01, G01, C02, G02, R03, the number of discrete contri-
butionsn, and averaged values of the discrete contributionsτi andhi are estimated in the
Monte Carlo study.

With the nonparametric method the averaged values of the model parametersC01, G01,
C02, G02, R03 are estimated and the average of a continuous distribution of the deep levels
is calculated. From this continuous distribution averaged discrete values for the relaxation
timesτi and the corresponding weightshi are estimated with Eqs. (5) and (6).

(1) Discrete contributions. Figure 2 shows the simulated admittance data and the three
hypothetical discrete contributions with

τ1 = 10−5 s, h1 = 0.2 sÄ−1,

τ2 = 10−4 s, h2 = 0.3 sÄ−1,

and

τ3 = 10−3 s, h3 = 0.6 sÄ−1.

With the parametric method the correct amount ofn= 3 discrete contributions was de-
termined in 92% of the 1000 simulated samples. In 8% of all simulated samples a wrong
amount ofn= 4 contributions was determined using the test procedure described in the
previous section. The corresponding estimated contributions are depicted in Fig. 3. The
results calculated with the parametric method show only very small deviations from the
originally given values for the correct numbern= 3. For the results estimated withn= 4
larger deviations are indicated by the error bars.
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FIG. 2. (a) Simulated admittance data,×, <(Y); u,=(Y); and (b) the hypothetical discrete contributions of
deep levels used for a Monte Carlo simulation.

In Fig. 4 the continuous distribution estimated with the nonparametric method is shown.
The averaged estimated deep level parameters and the averaged estimated additional model
parametersC01, G01, C02, G02, and R03 are shown in Tables I and II. The deep level
contributions are nearly as accurate as the ones calculated with the parametric method. The
results for the additional parameters agree very well with the hypothetical values for both
analysis methods.

The disadvantage of the parametric method is that additional deep level contributions
can be pretended which are not present in the data. Thus, the determination of the number
of contributions is a crucial point in the parametric method, because additionally pretended

TABLE I

Estimated Parameters of the Parametric and the Nonparametric

Method for Discrete Deep Level Contributions

Parametric(n= 3) Parametric(n= 4) Nonparametric

C01 [10−10 F] 0.99± 0.10 0.97± 0.12 0.95± 0.07
G01 [10−8 Ä−1] 1.0± 0.001 0.999± 0.002 0.999± 0.002
C02 [10−11 F] 1.0± 0.01 1.0± 0.01 1.006± 0.008
G02 [10−6 Ä−1] 1.001± 0.009 1.0± 0.01 1.01± 0.005
R03 [kÄ] 1.0± 0.005 1.0± 0.005 0.995± 0.009
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FIG. 3. Estimated discrete contributions in the Monte Carlo simulation. (a)n= 3 contributions (92%) and
(b)n= 4 contributions (8%). The vertical lines mark the hypothetical discrete values and the error bars characterize
the estimated ones. The arrow point at error bars which are too small to be seen. The left and right dashed lines
mark the borders where the solution is unique.

contributions can worsen the results of the relevant contributions. In contrast to this, with
the nonparametric method the correct number of deep level contributions was always de-
termined.

A disadvantage of the nonparametric method can appear if contributions are so close
together that the regularization procedure can only resolve one broader peak. The paramet-
ric method could better deal with this situation in the case when the number of discrete
contributions is known.

TABLE II

Estimated Deep Level Contributions of the Parametric and the Nonparametric

Method for Discrete Deep Level Contributions

Parametric(n= 3) Parametric(n= 4) Nonparametric

τi [s] hi [10−9 s/Ä] τi [s] hi [10−9 s/Ä] τi [s] hi [10−9 s/Ä]

(1.0± 0.5) · 10−5 0.2± 0.03 (8.2± 3.7) · 10−6 0.15± 0.07 (1.02± 0.2) · 10−5 0.15± 0.02
(1.01± 0.09) · 10−4 0.3± 0.02 (8.2± 2.9) · 10−5 0.28± 0.05 (0.97± 0.4) · 10−4 0.33± 0.02
(1.0± 0.01) · 10−3 0.6± 0.008 (7.2± 2.6) · 10−4 0.45± 0.2 (1.0± 0.01) · 10−3 0.62± 0.07

(8.2± 0.8) · 10−1 0.25± 0.26



ANALYSIS OF ADMITTANCE DATA 149

FIG. 4. The distributionτh(τ ) estimated with the regularization procedure in the Monte Corlo simulation.
The vertical lines mark the hypothetical discrete values and the error bars characterize the estimated values of the
distribution. The left and right dashed lines mark the borders where the solution is unique.

(2) Continuous contribution. Figure 5 shows the simulated admittance data and the
hypothetical continuous distribution for the relaxation times. This distribution was chosen
to be gaussian on a logarithmic scale with mean value 5· 10−2 and variance 2.0. With the
parametric method the number of different relaxation time contributions was determined to
n= 4 (32%), 5 (66.5%), and 6 (1.5%). The corresponding estimated discrete contributions
using the parametric method are depicted in Fig. 6. Although the estimated discrete contri-
butions are located near the continuous hypothetical distribution, their continuous character
cannot be assessed with the estimated results of the parametric method.

The continuous distribution estimated with the nonparametric method is shown in Fig. 7.
The nonparametric method yields a very accurate estimation of hypothetical distribution.
The averaged estimated model parameters are shown in Tables IIIa and IIIb. As in the
previous case these additional model parameters are estimated very well for both analysis
methods.

TABLE IIIa

Estimated Parameters of the Parametric Method for a Continuous

Deep Level Contribution

Parametric(n= 4) Parametric(n= 5) Parametric(n= 6)

C01 [10−10 F] 1.0± 0.002 1.0± 0.01 0.995± 0.004
G01 [10−8 Ä−1] 1.0± 0.002 0.999± 0.008 0.982± 0.02
C02 [10−11 F] 0.999± 0.001 1.0± 0.002 1.0± 0.001
G02 [10−6 Ä−1] 0.999± 0.001 1.0± 0.003 1.0± 0.002
R03 [kÄ] 1.0± 0.004 1.0± 0.004 1.001± 0.005
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TABLE IIIb

Estimated Parameters of the Nonpara-

metric Method for a Continuous Deep Level

Contribution

Nonparametric

C01 [10−10 F] 0.99± 0.01
G01 [10−8 Ä−1] 1.0± 0.002
C02 [10−11 F] 1.0± 0.002
G02 [10−6 Ä−1] 1.0± 0.002
R03 [kÄ] 0.997± 0.008

(3) Discrete and continuous contributions simultaneously.Figure 8 shows the simulated
admittance data and the hypothetical discrete and continuous deep level contributions. The
discrete contributions are taken from the first case and the continuous one is taken from
the second case.The number of estimated discrete contributions isn= 5 (92.5%), 6 (3.1%),
7 (4.1%), and 8 (0.3%) using the parametric method in the Monte Carlo simulation. The
corresponding estimated discrete contributions are depicted in Fig. 9.

FIG. 5. (a) Simulated admittance data,×,<(Y); u,=(Y); and (b) the hypothetical continuous distribu-
tion τh(τ ) of relaxation times used for a Monte Carlo study.
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FIG. 6. Estimated discrete contributions in the Monte Carlo study. (a)n= 4 (32%), (b)n= 5 (66.5%), and
(c) n= 6 (1.5%) contributions. The curve marks the hypothetical continuous distribution and the error bars
characterize the estimated discrete values. The arrow points at an error bar which is too small to be seen. The left
and right dashed lines mark the borders where the solution is unique.

The solution estimated with the nonparametric method is shown in Fig. 10. The results
for the additional model parametersC01, G01, C02, G02, andR03 are nearly the same as in
the two cases before. For this reason, they are not shown separately.

The results for the deep level contributions are comparable with the results in the previous
case. Forn= 5 andn= 8 determined contributions large deviations are observed for the



152 WINTERHALTER ET AL.

FIG. 7. The distributionτh(τ ) estimated with the regularization procedure in the Monte Carlo simulation.
The full line characterizes the hypothetical distribution and the error bars the estimated values of the distribution.
The left and right dashed lines mark the borders where the solution is unique.

FIG. 8. (a) Simulated admittance data,×, <(Y); u,=(Y); and (b) the hypothetical discrete and continuous
contributions of deep levels used for a Monte Carlo simulation.
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FIG. 9. Estimated discrete contributions in the Monte Carlo study. (a)n= 5 (92.5%), (b)n= 6 (3.1%),
(c) n= 7 (4.1%), and (d)n= 8 contributions (0.3%). The curve shows the hypothetical continuous distribution
and the vertical lines mark the hypothetical discrete contributions. The error bars characterize the estimated values.
The arrows point at error bars which are too small to be seen. The left and right dashed lines mark the borders
where the solution is unique.

results estimated with the parametric method. Even the three discrete contributions are not
resolved correctly in this case. Forn= 6 andn= 7 at least the discrete contributions are well
estimated, which happens only in 7.2% of all simulated data. But as in the previous case of
completely continuous contributions the continuous part is only poorly characterized.

In contrast to these results the solution is well estimated with the nonparametric method.
The continuous part of the whole hypothetical contribution is estimated very accurately and
the estimations of the weights of the discrete part are nearly the same as in the first case of
pure discrete contributions.

5. RESULTS FOR MEASURED DATA

The admittance of a GaAs Schottky diode was measured for several temperatures in
dependence on the frequencyω. The measurement details are pointed out extensively in
the previous articles [1, 13]. Here the measured admittance data were used to focus on the
differences of the parametric and nonparametric approach for their analysis.

As an example Fig. 11 shows the admittance data measured for a temperature of 6◦C, the
estimated discrete contributions using the parametric method, and the estimated continuous
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FIG. 10. The distributionτh(τ ) estimated with the regularization procedure in the Monte Carlo simulation.
The vertical lines mark the hypothetical values for the discrete contributions and the error bars characterize the
estimated values of the continuous distribution. The left and right dashed lines mark the borders where the solution
is unique.

distribution using the nonparametric method. The parametric method produced seven dis-
crete contributions and the nonparametric method a continuous distribution with four broad
peaks. The comparison leads to the problem of judging the accuracy of the results of each
method. If a continuous distribution is assumed then the parametric analysis could not re-
solve the peaks belowτ = 10−4 s. Furthermore, the broad distribution betweenτ = 10−4 s
andτ = 10−1 s is represented by a set of four discrete relaxation times. If on the contrary,
sharp relaxation times are assumed then the nonparametric method could not resolve this
discrete structure correctly.

To distinguish between the results of the different methods the analysis was performed
for different temperatures to obtain the Arrhenius plots (Fig. 12) for the relaxation times
of the levels. In order to calculate the activation energies and cross sections the points in
the Arrhenius plot must be related to straight lines. The following seven deep levels were
determined with the parametric method:

(1) 1E1 = (0.87± 0.03) eV, σ1 = (7.0± 9.6) · 10−11 cm2

(2) 1E2 = (0.76± 0.04) eV, σ2 = (4.3± 6.2) · 10−12 cm2

(3) 1E3 = (0.76± 0.04) eV, σ3 = (1.3± 2.0) · 10−11 cm2

(4) 1E4 = (0.77± 0.05) eV, σ4 = (6.9± 12.2) · 10−11 cm2

(5) 1E5 = (0.77± 0.05) eV, σ5 = (3.0± 5.7) · 10−10 cm2

(6) 1E6 = (0.74± 0.04) eV, σ6 = (3.1± 4.8) · 10−10 cm2

(7) 1E7 = (0.62± 0.09) eV, σ7 = (3.1± 9.9) · 10−11 cm2.
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FIG. 11. (a) Measured admittance data for a temperature of 60◦C.×, <(Y); u,=(Y). (b) The curve is the
continuous distribution estimated with the nonparametric method and the vertical lines represent the discrete
contributions estimated with the parametric method. For clarity the corresponding error bars are not shown. The
left and right dashed lines mark the borders where the solution is unique.

The following four deep levels were determined with the nonparametric method:

(1) 1E1 = (0.72± 0.03) eV, σ1 = (7.96± 9.29) · 10−13 cm2

(2) 1E2 = (0.65± 0.02) eV, σ2 = (8.86± 5.67) · 10−12 cm2

(3) 1E3 = (0.63± 0.02) eV, σ3 = (6.27± 5.24) · 10−12 cm2

(4) 1E4 = (0.50± 0.04) eV, σ4 = (6.49± 9.11) · 10−11 cm2.

The calculated deep levels are compared with results from literature in our previous
article [1]. In that article the reason for the large deviations of the estimated cross section
is discussed as well.

The number of deep levels determined with the parametric and with the nonparametric
method is quite different. But several deep levels estimated with the parametric method
have nearly the same activation energy and similar cross sections. Therefore, it seems to be
possible that the discrete levels (2)–(6) are due to an originally continuous contribution. With
the nonparametric method a continuous contribution is calculated with an average activation
energy of 0.72 eV. The levels (2)–(6) calculated with the parametric method would agree
with this activation energy within their estimated error range. The results of the Monte Carlo
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FIG. 12. Arrhenius-plots of the relaxation times obtained from measured admittance data. (a) The contribu-
tions are estimated with the parametric method and (b) with the nonparametric method.

simulations in the previous section have also shown this effect, that the parametric method
yields several discrete contributions for an originally continuous contribution.

Additionally, the model parameters are estimated with the parametric and the non-
paramtric method in dependence on the temperature (Figs. 13 and 14). Both analysis meth-
ods yield nearly the same model parameters but the values estimated for the capacityC01

with the parametric and the nonparametric method are not quite identical. Table IV shows
the average values for the nearly temperature independent parametersC01, C02, andR03,

TABLE IV

Estimated Parameters of the Parametric and the Nonparametric

Method for Measured Admittance Data

Parametric Nonparametric

C01 [10−10 F] 0.75± 0.4 0.79± 0.01
C02 [10−11 F] 1.1± 0.01 1.1± 0.01
R03 [kÄ] 2.0± 0.05 1.99± 0.06
V0 [V] 0 .822± 0.009 0.814± 0.006
Eg [eV] 1.44± 0.02 1.43± 0.01
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FIG. 13. The parameters obtained from the measured admittance data in dependence on 1/T estimated with
the parametric method. (a) The conductivitiesG01, G02, and 1/R03. (b) The capacitiesC01 andC02.

for the potential barrierV0, and for the energy of the band gapEg. The parametersV0 and
Eg were fitted on the temperature dependent values ofG01 andG02 using the relationships
of Eqs. (7a) and (7b).

The reliability of the estimated values of the both capacitiesC01 andC02, the resistance
R03, and the values for the potential barrierV0 and the band gapEg are discussed extensively
in our previous article [1].

6. CONCLUSIONS

For the analysis of measured admittance data of a Schottky diode two different methods
are compared: A parametric and a nonparametric method. The parametric method assumes
discrete deep level contributions whereas with the nonparametric method continuous con-
tributions are supposed.

The comparison shows a great disadvantage of the parametric method to the nonpara-
metric method. The parametric analysis is only suited for discrete contributions and cannot
estimate continuous ones at all. A Monte Carlo study on simulated admittance data has
shown that the parametric method is not able to estimate reliable results if a part of the
deep level contribution is continuous. Even for completely discrete deep level contributions



158 WINTERHALTER ET AL.

FIG. 14. The parameters obtained from the measured admittance data in dependence on 1/T estimated with
the nonparametric method. (a) The conductivitiesG01, G02, and 1/R03. (b) The capacitiesC01 andC02.

the results of the parametric method depend essentially on the number of contributions
which must be determined separately. Only if this number is determined correctly the cor-
responding results are in a good agreement with the physical properties of the examined
material.

On the contrary, the nonparametric method is suited for the estimation of discrete contri-
butions as well as for continuous distributions of deep levels. In this sense nonparametric
methods are superior to parametric ones. But it should be mentioned that the nonpara-
metric method has the disadvantage that originally discrete contributions are estimated as
slightly broadened peaks in the continuous distribution. The broadening for this continuous
distribution is among other influences caused by the noise of the experimental data. Con-
sequently, discrete peaks which are very close together could not be estimated as separate
peaks but only as a single broadened one. We think that this disadvantage is compensated
by the advantage that the number of discrete contributions is obtained automatically from
the number of peaks in the estimated continuous distribution.
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